
Greenhouse: A Zero-Positive Machine Learning System
for Time-Series Anomaly Detection

Tae Jun Lee*

Microsoft
Justin Gottschlich, Nesime Tatbul

Intel Labs
Eric Metcalf, Stan Zdonik

Brown University

ABSTRACT
This short paper describes our ongoing research on Greenhouse -
a zero-positive machine learning system for time-series anomaly
detection.

1 INTRODUCTION
The emerging “killer app” of the Internet of Things (IoT) envisions
a world made up of huge numbers of sensors and computing devices
that interact in intelligent ways (e.g., self-driving cars, industrial
automation, mobile phone tracking). The sensors produce massive
amounts of data and the computing devices must figure out how to
use it. The preponderance of this data is numerical time-series.

Anomaly detection, i.e., the process of finding patterns that do not
conform to expected behavior, over time-series is an important capa-
bility in IoT with multiple potential applications. Through anomaly
detection, we can identify unusual environmental situations that need
human attention [4], distinguish outliers in sensor data cleaning [2],
or pre-filter uninteresting portions of data to preserve computing
resources, to name a few.

Prior research on time-series anomaly detection largely relied on
traditional data mining and machine learning techniques [7]. More
recently, new techniques using deep neural networks have gained
attention. Recurrent neural networks (RNNs), and in particular their
Long Short-Term Memory (LSTM) variant, excel at capturing short-
term dependencies when making predictions over sequence data
[8, 9]. Specifically, LSTM has the ability to support new data as well
as a way to gracefully forget old, and therefore less relevant, data.
As such, it is a good fit for predicting time-varying patterns over
sequential data, as in time-series anomaly detection [14].

In this paper, we describe a novel time-series anomaly detection
system called Greenhouse. Our key goal in Greenhouse is to combine
state-of-the-art machine learning and data management techniques
for efficient and accurate prediction of anomalous patterns over
high volumes of time-series data. We have designed Greenhouse
as a zero-positive machine learning system [3], in that, it does not
require anomalous samples in its training datasets. This capability
has notable practical value, because it can be challenging to collect
and label anomalous data when anomalies are rare and varying.

In what follows, we first summarize our algorithmic machine
learning framework and preliminary results from its implementation
on top of the TensorFlow machine learning library [1]. Then we
discuss our ongoing research agenda in extending this framework
into an end-to-end time-series anomaly detection system for IoT.

*The work was done while a Brown student.

SysML’18, February 2018, Stanford, CA, USA
2018.

2 ALGORITHMIC FRAMEWORK
At the heart of Greenhouse’s algorithmic framework is an LSTM-
based neural network model, which is used to predict values at
future time points based on values observed at past time points. This
model is built based on a training dataset which represents what is
considered to be “normal”, and is then used for detecting anomalous
values - those that sufficiently deviate from what the model predicts
would be normally observed.

Given a time-series that consists of an isochronous (i.e., evenly
spaced in time) sequence of (time, value) pairs as illustrated in Table
1, there are two basic tasks that are repeatedly performed in our
framework:
Making a prediction: For a given time point t , a window of most
recently observed values [vt−B , ..,vt−1] of length B is used as “Look-
Back” to predict a subsequent window of values [vt , ..,vt+F−1] of
length F as “Predict-Forward”. This is applied to all points in the
given time-series in a sliding window fashion, resulting in F distinct
value predictions for each time point. For example, in Table 1a, for
t = 4, a Look-Back window with observed values [v1,v2,v3] is used
to predict a Predict-Forward window with values [p4.1,p5.1]. As a
result, we obtain two value predictions per time point (except the
initial point), e.g., p5.1 and p5.2 for t = 5.
Computing an error vector: For a given time point t , an error vec-
tor “Error Vector(t)” of length F is computed. This vector consists of
differences between predicted and observed values that correspond
to time point t . For example, in Table 1b, the error vector for t = 5
consists of two values: [p5.1 −v5,p5.2 −v5].

Table 1: Predictions and Error Vectors for an example time-
series (time, value) = [(1,v1), (2,v2), (3,v3), (4,v4), (5,v5), ...]

(a) Making a Prediction

Look-Back Predict-Forward
(B=3) (F=2)

v1, v2, v3 p4.1, p5.1
v2, v3, v4 p5.2, p6.1
v3, v4, v5 p6.2, p7.1
v4, v5, v6 p7.2, p8.1

... ...

(b) Computing an Error Vector

Time Error
Point Vector (t)

t = 5 [p5.1 − v5, p5.2 − v5]
t = 6 [p6.1 − v6, p6.2 − v6]
t = 7 [p7.1 − v7, p7.2 − v7]
t = 8 [p8.1 − v8, p8.2 − v8]

... ...

As illustrated in Figure 1, our overall framework mainly consists
of two phases: (i) build an LSTM model (M) and a multi-variate
probability distribution for error vectors (N), and determine an error
threshold for anomalies (τ) during a Training Phase; (ii) use M , N ,
and τ to detect anomalies over previously unseen data sets during an
Inference Phase. We now provide a step-by-step summary of these
two phases.
Training Phase: Training is performed in four key steps:

ar
X

iv
:1

80
1.

03
16

8v
3

 [
cs

.A
I]

 1
1

Fe
b

20
18

SysML’18, February 2018, Stanford, CA, USA T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, S. Zdonik

Figure 1: Training and Inference Phases in Greenhouse

(1) Split a non-anomalous dataset into three: TrainingDataset-1,
TrainingDataset-2, TrainingDataset-3.

(2) Train an LSTM prediction model M with TrainingDataset-1.
(3) Apply M over TrainingDataset-2 to make predictions and

compute error vectors. Then fit the resulting error vectors into
a multi-variate normal distribution N .

(4) Apply M over TrainingDataset-3 to make predictions and
compute error vectors. Then compute M-distances (Mahalano-
bis-distances [13]), and fit the resulting M-distances into a
truncated normal distribution T . Finally, evaluate the inverse
cumulative distribution function of T at a user-specified per-
centile to be used as the anomaly detection threshold τ .

Inference Phase: Inference involves the following steps:
(1) Apply M over NewDataset to make predictions.
(2) Compute error vectors.
(3) Compute M-distances between these error vectors and the

center of N .
(4) Finally, label the time-series values whose M-distances ex-

ceed τ as anomalies.

Table 2: Greenhouse vs. LSTM-AD [14]

Precision Recall F1 score

Greenhouse (Twitter_AAPL) 0.49 0.06 0.11
LSTM-AD (Twitter_AAPL) 0.22 0.14 0.17
Greenhouse (nyc_taxi) 0.25 0.58 0.35
LSTM-AD (nyc_taxi) 0.26 0.82 0.40

We implemented this algorithm on top of TensorFlow [1], and
compared its anomaly detection accuracy with LSTM-AD [14],
based on real-world datasets from the Numenta Anomaly Benchmark
[11]. LSTM-AD fundamentally differs from Greenhouse in that, it
is not zero-positive, i.e., it requires anomalous samples to be present
in its training datasets. We present a sample experimental result in
Table 2. For two different datasets, Greenhouse performed favorably
over LSTM-AD in terms of its Precision and managed to maintain a
close F1 score, despite its lower Recall. This is a remarkable result,
especially given that Greenhouse uses significantly smaller training
data (about 25% and 55% that of LSTM-AD, respectively) and does
not rely on any anomalous samples. We believe these are powerful
qualities, making Greenhouse more generally applicable in practice.

3 ONGOING RESEARCH
Going forward, we are working on a number of research issues to
extend our algorithmic framework into a full-feature time-series
anomaly detection system for IoT. We conclude the paper with an
overview of these issues.
Training dataset management: In Greenhouse, we use multiple
datasets during training. Furthermore, for sequential data like time-
series, respecting order, regularity (isochronism), and continuity is
important in correctly capturing patterns of interest. In order to avoid
the risk of over/under-fitting and to preserve continuity, we need to
pay attention to how we choose and arrange our training datasets.
Range-based anomalies and their evaluation: Time-series anom-
alies often manifest themselves over a period of time rather than at
single time points (so-called range-based or collective anomalies
[6, 7]). Furthermore, judging accuracy of results in this context is
highly intricate and application-dependent. We are extending Green-
house with models and algorithms to handle range-based anomalies
in a principled manner [12].
Real-time anomaly detection: Our algorithmic framework initially
focused on operating in an “offline mode”, where both training and
inference are applied on finite datasets that have been collected in
the past and are being analyzed retrospectively after the fact. In
many IoT applications, real-time anomaly detection on live data is
also important. Thus, we are extending Greenhouse to operate in an
“online mode”, which requires continuous, low-latency inferencing
(and possibly training) over streaming time-series. This includes
things like carefully analyzing the impact of algorithm and model
parameters on accuracy and performance, and properly tuning them
as datasets change.
Utilizing human feedback: When deployed in an online setting,
Greenhouse will start making anomaly predictions on new datasets
as well as potentially saving these (self-labeled) datasets for further
training. Furthermore, feedback from human may be available to
validate anomaly predictions or to course-correct. We plan to aug-
ment Greenhouse with reinforcement learning techniques to utilize
such feedback when available [5].
Data management support: As in any deep learning system, data
is an indispensable resource in Greenhouse. We will deploy Green-
house and study its data management needs within the context of a
time-series data management system environment (e.g., Metronome
[15]). This includes things like providing methods of efficient and
consistent access to arbitrary windows of data needed by Greenhouse
algorithms.
Exploiting high-performance compute frameworks: While im-
plemented on top of a state-of-the-art machine learning frame-
work [1], Greenhouse does not yet take full advantage of high-
performance compute facilities provided by such frameworks. We
plan to extend Greenhouse in this direction, including exploring its
use in conjunction with other complementary tools and libraries,
such as Intel® Nervana™ Graph [10].
Support for distributed IoT deployments: IoT applications typi-
cally execute on multi-tier deployments from wireless networks of
edge devices to more powerful cloud servers. We plan to investi-
gate the use of Greenhouse in such distributed deployments with
heterogeneous computing resources.

Acknowledgments. This research has been funded in part by Intel.

Greenhouse: A Zero-Positive Machine Learning System
for Time-Series Anomaly Detection SysML’18, February 2018, Stanford, CA, USA

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Ma-
chine Learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI). 265–283.

[2] Charu C. Aggarwal. 2013. Outlier Analysis. Springer.
[3] Mohammad Mejbah Ul Alam, Justin Gottschlich, and Abdullah Muzahid. 2017.

AutoPerf: A Generalized Zero-Positive Learning System to Detect Software Perfor-
mance Anomalies. Technical Report. http://arxiv.org/abs/1709.07536/

[4] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. 2017. MacroBase: Prioritizing Attention in Fast Data. In ACM
International Conference on Management of Data (SIGMOD). 541–556.

[5] Bram Bakker. 2001. Reinforcement Learning with Long Short-term Memory. In
14th International Conference on Neural Information Processing Systems (NIPS).
1475–1482.

[6] Loic Bontemps, Van Loi Cao, James McDermott, and Nhien-An Le-Khac. 2017.
Collective Anomaly Detection based on Long Short Term Memory Recurrent
Neural Network. Technical Report. https://arxiv.org/abs/1703.09752

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Computing Surveys 41, 3 (2009), 15:1–15:58.

[8] Christopher Olah. 2015. Understanding LSTM Networks. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/. (2015).

[9] Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Computation 9, 8 (1997), 1735–1780.

[10] Intel. 2017. Intel Nervana Graph. http://ngraph.nervanasys.com/. (2017).
[11] Alexander Lavin and Subutai Ahmad. 2015. Evaluating Real-Time Anomaly

Detection Algorithms - The Numenta Anomaly Benchmark. In 14th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA). 38–44.

[12] Tae Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, and Stan Zdonik.
2018. Precision and Recall for Range-Based Anomaly Detection. https://arxiv.
org/abs/1801.03175/. In SysML Conference.

[13] Prasanta Chandra Mahalanobis. 1936. On the Generalised Distance in Statistics.
Proceedings of the National Institute of Sciences of India 2, 1 (1936), 49–55.

[14] Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2015. Long
Short Term Memory Networks for Anomaly Detection in Time Series. In Euro-
pean Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN). 89–94.

[15] John Meehan, Cansu Aslantas, Stan Zdonik, Nesime Tatbul, and Jiang Du. 2017.
Data Ingestion for the Connected World. In Conference on Innovative Data Sys-
tems Research (CIDR).

http://arxiv.org/abs/1709.07536/
https://arxiv.org/abs/1703.09752
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://ngraph.nervanasys.com/
https://arxiv.org/abs/1801.03175/
https://arxiv.org/abs/1801.03175/

	Abstract
	1 Introduction
	2 Algorithmic Framework
	3 Ongoing Research
	References

