Motivation and Core Principles

- **The Problem**
 - Anomalies are patterns that do not conform to expected behavior.
 - Time Series Anomaly Detection is particularly challenging because:
 - Anomalies are domain and context specific.
 - There is typically little or no available ground-truth.
 - This requires domain experts to explore and compare the results of black-box detectors so that they:
 - Understand the characteristics of different detectors on their data and,
 - Are able to better infer their behavior in hypothetical scenarios not present in the data.

- **Our Solution**
 - Metro-Viz helps domain experts visually analyze time series data and detector performance through four key features:
 - Browsing and inspecting anomalies (regardless of the size of the data).
 - Filter anomalies using key properties.
 - Probe detector behavior through counter-factuals.
 - Evaluate detectors using interactively built ground-truth.
 - This presents a unique workload to a data management system:
 - Aggregate > Explore
 - Detect > Compare

- **Goals, Constraints, and Approach**
 - **Goals:**
 - Maintain interactive latency (e.g., 60 fps) or keep user informed of system activity.
 - Understand challenges and requirements posed by workload.
 - **Constraints:**
 - Cannot assume user access patterns in their data (e.g., arbitrary granularities / windows).
 - Data sources come from legacy/3rd party data systems.
 - Users should not wait to see results.
 - Cannot rely on client-side data management.
 - **Approach:**
 - UI-DB co-design: APIs that access system information.
 - Architecture prioritizes user interaction over background tasks.

Architectural Overview

Anomaly Module

- TSAD-Evaluator: https://github.com/IntelLab/TSAD-Evaluator

Anomaly Module Implementation Details

- **Chunk** time to discrete fixed sized chunks from Unix Epoch.
- **Windows** are a collection of these chunks.
- Query underlying data storage for chunks in time.
- Detect anomalies only on the windows of interest, background detections on other windows.
- Detections are first-class data citizens: prefetch and store them as data, not metadata.
- Detections stored as bit-vectors for efficient set and comparison operations.

Take-Aways

- **Interactive latency:** Throughput matters less than latency. Response in the order of < 30ms required - any slower leads to poor interactive interface.
- **Aggregation bottleneck:** Time-series AD requires arbitrary granularity. Most databases assume granularities a-priori.
- **Ratio of chunk-size and base granularity:** Determines how much data is touched and directly affects latency.
- **Bit-vectors work well** for the many operations involved in comparing anomaly detection results.

Future Work

- Explore index and cache techniques to address aggregation bottleneck while considering chunk-size and granularity to maintain interactive latency at scale.
- User study measuring the efficacy of Metro-Viz UI in assisting in the HiL workload.

Philipp Eichmann (Brown University); Franco Solleza (Brown University); Junjay Tan (Brown University); Nesime Tatbul (Intel Labs and MIT); Stan Zdonik (Brown University)